
Mechanics of Materials 92 (2016) 94–106

Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier.com/locate/mechmat

Effective elastic moduli of core-shell-matrix composites

Benjamin A. Young a, Amanda M.K. Fujii a, Alexander M. Thiele a, Aditya Kumar b,
Gaurav Sant b,c, Ertugrul Taciroglu b, Laurent Pilon a,∗

a University of California, Los Angeles, Henry Samueli School of Engineering and Applied Science, Mechanical and Aerospace Engineering

Department, 420 Westwood Plaza, Los Angeles, CA 90095, United States
b University of California, Los Angeles, Henry Samueli School of Engineering and Applied Science, Civil and Environmental Engineering

Department, 420 Westwood Plaza, Los Angeles, CA 90095, United States
c University of California, Los Angeles, Henry Samueli School of Engineering and Applied Science, California Nanosystems Institute (CNSI), 420

Westwood Plaza, Los Angeles, CA 90095, United States

a r t i c l e i n f o

Article history:

Received 28 April 2015

Revised 28 July 2015

Available online 15 September 2015

Keywords:

Effective medium approximations

Three-component composites

Micromechanical modeling

Phase change materials

Microencapsulation

Building materials

a b s t r a c t

The effective Young’s modulus and Poisson’s ratio of spherical monodisperse and polydisperse

core-shell particles ordered or randomly distributed in a continuous matrix were predicted

using detailed three-dimensional numerical simulations of elastic deformation. The effective

elastic moduli of body-centered cubic (BCC) and face-centered cubic (FCC) packing arrange-

ments of monodisperse microcapsules and those of randomly distributed monodisperse or

polydisperse microcapsules were identical. The numerical results were also compared with

predictions of various effective medium approximations (EMAs) proposed in the literature.

The upper bound of the EMA developed by Qiu and Weng (1991) was in good agreement with

the numerically predicted effective Young’s modulus for BCC and FCC packings and for ran-

domly distributed microcapsules. The EMA developed by Hobbs (1971) could also be used to

estimate the effective Young’s modulus when the shell Young’s modulus was similar to that of

the matrix. The EMA developed by Garboczi and Berryman (2001) could predict the effective

Poisson’s ratio, as well as the effective Young’s modulus when the Young’s modulus of the core

was smaller than that of the matrix. These results can find applications in the design of self-

healing polymers, composite concrete, and building materials with microencapsulated phase

change materials, for example.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

PCMs are thermal energy storage materials that can store

a large amount of energy in the form of latent heat (Ling

and Poon, 2013). Substantial interest exists in embedding

phase change materials (PCMs) into building materials, such

as mortars, concrete, and gypsum wallboard, in order to
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improve building energy efficiency (Ling and Poon, 2013;

Tyagi and Buddhi, 2007; Farid et al., 2004; Sharma et al.,

2009; Tyagi et al., 2011; Salunkhe and Shembekar, 2012;

Khudhair and Farid, 2004; Cabeza et al., 2007; Hunger et al.,

2009). In such applications, organic PCMs are encapsulated

in microcapsules with a median diameter between 1 μm and

1 mm, and a capsule thickness of a few microns, to prevent

(i) the leakage of liquid PCM, (ii) reaction with the cemen-

titious matrix, and (iii) to minimize the risk of flammable

organic PCMs (Farid et al., 2004; Sharma et al., 2009; Tyagi

et al., 2011; Salunkhe and Shembekar, 2012; Fernandes et al.,

2014). Typically, the encapsulation (e.g., melamine-formate),

and the encapsulated PCM (e.g., a paraffin) demonstrate

http://dx.doi.org/10.1016/j.mechmat.2015.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2015.09.006&domain=pdf
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mechanical properties (e.g., elastic modulus, strength) far

inferior to the cementitious matrix. As a result, the in-

clusion of PCM microcapsules into cementitious systems

results in degradation of mechanical properties, in pro-

portion to the inclusion volume (Hunger et al., 2009;

Fernandes et al., 2014). Thus, for reasons of structural (build-

ing) design, it is necessary to understand how the inclusion of

PCMs influences the mechanical properties of cementitious

composites. Similarly, in composite concrete, chemical reac-

tions between aggregates and the cement paste result in the

development of the so-called interfacial transition zone (ITZ)

between the two materials (Mindess et al., 2003). This type of

concrete could also be modeled as a three-component core-

shell-matrix composite, with the aggregates, ITZ, and cement

paste corresponding to the core, shell, and matrix compo-

nents, respectively.

Other applications of three component core-shell-matrix

composites include self-healing polymer composites (Brown

et al., 2004; White et al., 2001). This composite material con-

sists of microcapsules filled with healing agents such as dicy-

clopentadiene (DCPD) embedded in an epoxy matrix. When

the polymeric capsules are ruptured by a propagating crack,

the encapsulated healing agent is released, thus sealing the

crack (Brown et al., 2004). Such self-healing polymers have

applications in the aviation industry, where cracking is a ma-

jor safety hazard (Ghosh, 2009).

In all the aforementioned applications, predicting the ma-

terial’s mechanical response to various loading conditions is

essential to the material selection and design. There exists

a wide range of micromechanical models formulated to pre-

dict the effective elastic properties of multicomponent com-

posites. The vast majority of these models account for the

presence of an inclusion stiffer than the surrounding matrix,

rather than softer. In addition, they were often derived by

considering a single microcapsule in an infinitely large ma-

trix. Finally, there exist so many different effective medium

approximations that one wonders which one is the most

appropriate. The present study aims to rigorously predict

the effective elastic moduli of three-component core-shell-

matrix composites through numerical simulations of a wide

range of microcapsule size and spatial distributions as well

as volume fractions and mechanical properties of the con-

stituent materials.

2. Background

2.1. Mechanical properties of materials

Linear elastic constitutive relationships for an isotropic

material are given by Hjelmstad (2005)

σ = C : ε (1)

where σ and ε are the stress and strain tensors, respectively,

and C is the fourth-order stiffness tensor. The latter is a prop-

erty of the material and depends on its microstructure and

temperature. The same expression can be written in compo-

nent form as,

σi j = Ci jkl εkl (2)

where summation is implied over repeated indices, and their

ranges are given as {i, j, k, l} ∈ {1, 2, 3}. For homogeneous and
Nomenclature

C stiffness tensor, GPa

D diameter, μm

E Young’s modulus, GPa

G shear modulus, GPa

I fourth-order identity tensor

K bulk modulus, GPa

L unit cell length, μm

N number of unit cells

S Eshelby tensor

u displacement vector, m

u displacement in the x-direction, m

v displacement in the y-direction, m

w displacement in the z-direction, m

Symbols

φ volume fraction

ν Poisson’s ratio

λ Lamé’s first parameter, GPa

μ Lamé’s second parameter, GPa

σ normal stress, MPa

τ shear stress, MPa

σ Cauchy stress tensor, MPa

ε infinitesimal strain tensor

ε normal strain

γ shear strain

Subscripts

c refers to core

eff refers to effective properties

m refers to matrix

s refers to shell

c + s refers to core-shell particle

isotropic materials, the tensor C is given by

i jkl = λδi j δkl + μ(δik δ jl + δil δ jk) (3)

where λ and μ are the Lamé parameters, and δαβ denotes

a Kronecker delta. The material tensor in Eq. (3) can also be

expressed in terms of other well known elastic moduli, using

the following identities

λ = E ν

(1 + ν)(1 − 2ν)
= K − 2

3
G, μ = E

2(1 + ν)
= G (4)

where E, K, and G are, respectively, the Young’s, bulk, and

shear moduli, while ν is the Poisson’s ratio.

2.2. Effective medium approximations

Effective medium approximations (EMAs) have been for-

mulated to predict the effective elastic moduli of three-

component core-shell-matrix composites. Various expres-

sions of EMAs developed for Eeff, νeff, Geff, and Keff as

functions of the elastic moduli of the core (subscript c), the

shell (subscript s), and the matrix (subscript m) and of their

respective volume fractions, denoted by φc, φs, and φm, are

discussed in the next section. Some EMAs use the core-shell

volume fraction defined as φc+s = φc + φs (Qiu and Weng,

1991; Herve and Zaoui, 1993).
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2.2.1. Two-component EMAs

Numerous EMAs have been developed to predict the ef-

fective elastic moduli of two-component composite mate-

rials consisting of particles embedded in a continuous ma-

trix, as reviewed in Wijeyewickrema and Leungvichcharoen

(2003). Voigt (1910) and Reuss (1929) proposed upper and

lower bounds for the effective elastic moduli of n-component

composites using the parallel and series models, respec-

tively. However, these models are both based on a simple

two-dimensional geometry consisting of continuous layered

fibers. In addition, the bounds do not typically give a close

prediction of the effective elastic moduli of composites with

spherical geometry. Another set of bounds was developed by

Hashin and Shtrikman (1963). The authors used variational

principles in elasticity without any assumption on the com-

posite geometry. These bounds gave a “good” estimate of the

effective elastic moduli Eeff and νeff when the ratios between

the moduli of constituent components were “not too large”

(Hashin and Shtrikman, 1963).

Christensen and Lo (1979) developed a generalized

self-consistent method (GSCM) by representing a two-

component composite as a three-component composite con-

sisting of the same concentric core and shell phases sur-

rounded by the equivalent homogeneous effective medium

having the effective mechanical properties of the two-phase

composite. Hobbs (1971) developed an EMA for the effec-

tive Young’s modulus Eeff of two-component composites

which solely depended on the core volume fraction φc and

on the Young’s moduli of the core and matrix Ec and Em,

expressed as

Eeff = Em

[
1 + 2φc(Ec − Em)

(Ec + Em) − φc(Ec − Em)

]
. (5)

2.2.2. Three-component EMAs

Qiu and Weng (1991) used the formulation given by

Christensen and Lo (1979) to develop upper and lower

bounds for the effective shear modulus Geff,+ and Geff,− of

three-component composites given by

Geff,+ = Gm + φc(Gc − Gm)
(

b(ε)
1

− 21

5(1 − 2νc)
b(ε)

2

)

+ φs(Gs − Gm)

(
b(ε)

3
− 21

5(1 − 2νs)

φ5/3
c+s − φ5/3

c

φsφ
2/3
c+s

b(ε)
4

)
(6)

Geff,− =
[

1

Gm
+ φc

(
1

Gc
− 1

Gm

)(
b(σ )

1
− 21

5(1 − 2νc)
b(σ )

2

)

× Gc

Gm
+ φs

(
1

Gs
− 1

Gm

)(
b(σ )

3
− 21

5(1 − 2νs)

× φ5/3
c+s − φ5/3

c

φsφ
2/3
c+s

b(σ )
4

)
Gs

Gm

]−1

. (7)

where b
(ε)
i

and b
(σ )
i

are constants dependent on the elastic

moduli of individual components and whose expressions can

be found in Qiu and Weng (1991). In most cases, the authors

found that these bounds were “tighter than” the Hashin–

Shtrikman bounds (Hashin and Shtrikman, 1963). They also

derived an analytical model for the effective bulk modulus

Keff of a three-component composite (Qiu and Weng, 1991)
using Hashin’s expression for two-component composites

represented by a single homogeneous particle embedded in a

matrix (Hashin, 1962). The authors first applied Hashin’s so-

lution to determine the effective bulk modulus of an effective

core-shell particle Keff,p. Then, they developed an exact solu-

tion of the effective bulk modulus of the three-component

composite by again using Hashin’s solution with Keff,p as the

core phase. The exact solution for Keff was given by (Qiu and

Weng, 1991)

Keff

= Km +

(
Km + 4

3
Gm

)[
A12 + B12

(
Kc + 4

3
Gs

)]

−A12 − 4

3

φc

φc+s
(Gm − Gs) +

(
Kc + 4

3
Gs

)⎛
⎝ Ks + 4

3
Gm

Kc − Ks
− B12

⎞
⎠

(8)

where the parameters A12 and B12 are defined as

A12 = φc

(
Km + 4

3
Gs

)
and B12 = φc+s

Ks − Km

Kc − Ks
. (9)

Note that the authors did not compare predictions of their

model with numerical or experimental results.

Herve and Zaoui (1993) extended Christensen and Lo’s

model (Christensen and Lo, 1979) to develop analytical so-

lutions for an (n + 1)-component sphere consisting of n con-

centric layers surrounding a core to yield an expression for

the effective shear modulus Geff. They also derived an ex-

pression for the effective bulk modulus Keff which was the

same as Eq. (8) derived by Qiu and Weng (1991). Here, the

authors assumed that all components were isotropic and lin-

early elastic and that there was continuous contact at the in-

terfaces between layers. However, they did not validate the

expression derived for the elastic moduli with numerical pre-

dictions or experimental measurements.

Dunn and Ledbetter (1995) used Hori and Nemat-Nasser

(1993) analysis of the average elastic fields in a double in-

clusion, consisting of two concentric inclusions in an infinite

matrix, to develop an analytical expression for the effective

stiffness tensor Ceff of three-component core-shell-matrix

composites. The predictions of their model agreed well with

the experimentally measured effective Young’s modulus Eeff

and Poisson’s ratio νeff of mullite/Al2O3 particles embedded

in an aluminum matrix for core-shell particle volume frac-

tions φc+s ranging from 0 to 0.3. Note that the experimental

samples did not correspond to the core-shell particle mod-

eled since the Al2O3 particles were randomly dispersed in

spherical mullite particles.

Yang (1998) also used Hori and Nemat-Nasser’s double

inclusion method (Hori and Nemat-Nasser, 1993) to repre-

sent spherical concentric core and shell as an effective par-

ticle. The author then used the Mori–Tanaka method (Mori

and Tanaka, 1973) to determine the effective stiffness tensor

Ceff of the two-component composite formed by an effective

particle embedded in a matrix. Yang (1998) compared the ef-

fective Young’s modulus predicted by the model with exper-

imental measurements of concrete, where sand, the interfa-

cial transition zone (ITZ), and mortar were modeled as the

core, shell, and matrix materials, respectively. The mechani-

cal properties of the ITZ were unknown so a direct compari-

son between analytical and experimental results could not be
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performed. Instead, Yang (1998) determined that, for a given

shell thickness and core volume fraction φc ranging from 0

to 0.5, the experimental results were within the bounds pre-

dicted by the model for shell-to-matrix Young’s modulus ra-

tios Es/Em ranging from 0.2 to 0.7.

Garboczi and Berryman (2001) used differential effective

medium theory (D-EMT) to develop an analytical expres-

sion for the effective bulk modulus Keff and shear modulus

Geff of microcapsules randomly distributed in a matrix. First,

the core and shell were represented as an effective particle

using the generalized self-consistent method (Christensen

and Lo, 1979). The effective bulk modulus Keff for the three-

component composite was given by

Keff = Km

φk
m

(10)

where the power k is expressed as

k =

(
Km + 4

3
Gm

)
(Keff,p − Km)

Km

(
Keff,p + 4

3
Gm

) . (11)

Here, the bulk modulus of the effective core-shell particle

Keff,p was given by

Keff,p = Ks + φc/s(Kc − Ks)

1 + (1 − φc/s)
Kc − Ks

Ks + 4

3
Gs

(12)

where φc/s = φc/(φc + φs). In addition, the effective shear

modulus Geff was expressed as

Geff = Gm

φg
m

(13)

where the power g was given by

g =
5

(
Km + 4

3
Gm

)
(Geff,p − Gm)

3Gm

(
Km + 8

9
Gm

)
+ 2Geff,p(Km + 2Gm)

. (14)

Here, the shear modulus of the effective core-shell particle

Geff, p was retrieved by solving the quadratic equation

A

(
Geff,p

Gs

)2

+ 2B

(
Geff,p

Gs

)
+ C = 0 (15)

where A, B, and C are constants depending on the radii and

elastic moduli of the core and shell components. Their ex-

pressions can be found in Garboczi and Berryman (2001). The

authors found that the predictions of their model were in

good agreement with those obtained from two- and three-

dimensional (2D and 3D) numerical simulations of monodis-

perse and polydisperse microcapsules randomly distributed

in a matrix. However, the only material property that was

varied in the numerical simulations was the shell Young’s

modulus Es. Thus, the validity of this model has not been es-

tablished for a wide range of core, shell, and matrix mechan-

ical properties.

Li et al. (1999) developed an expression for the effective

Young’s modulus Eeff of monodisperse and polydisperse par-

ticles randomly distributed in a matrix. To derive this expres-

sion, they extended the generalized self-consistent method
(Christensen and Lo, 1979) to represent a spherical inclu-

sion, shell, and matrix as a four-phase sphere consisting of

a core-shell-matrix particle embedded in an infinite equiva-

lent medium. The effective Young’s modulus was dependent

on the effective Poisson’s ratio νeff of the three-component

composite. Using the parallel model to predict νeff, the au-

thors found good agreement between the predictions of

their model and experimental measurements of the effective

Young’s modulus of concrete for core volume fractions be-

tween 0.4 and 0.8.

Overall, numerous studies (Voigt, 1910; Reuss, 1929;

Hashin and Shtrikman, 1963; Hobbs, 1971; Qiu and Weng,

1991; Dunn and Ledbetter, 1995; Yang, 1998; Garboczi and

Berryman, 2001; Herve and Zaoui, 1993; Li et al., 1999) have

derived EMAs analytically to predict the effective mechani-

cal properties of core-shell particles embedded in a matrix.

However, it remains unclear how the predictions of these

EMAs differ from one another and which one is the most ac-

curate. Moreover, most EMAs were typically obtained ana-

lytically by considering a single core-shell capsule in an in-

finite matrix as a representative elementary volume of the

three-component composite material. None of these studies

investigated whether the effective mechanical properties de-

pend on packing arrangement or particle size distribution.

Furthermore, the studies presenting EMAs did not specify

their range of applicability for constituent material prop-

erties and volume fractions. What’s more, they often were

not validated against experiments or detailed numerical

simulations.

The present study aims to perform detailed numerical

simulations of three-component core-shell-matrix compos-

ites under elastic deformation to elucidate the effect of the

composite’s morphology and of the constituent’s mechani-

cal properties on the effective Young’s modulus and Poisson’s

ratio. It also aims to identify EMAs capable of accurately pre-

dicting the effective Young’s modulus and Poisson’s ratio of

three-component composites over a wide range of composite

morphologies, volume fractions, Young’s moduli, and Pois-

son’s ratios of the core, shell, and matrix.

3. Analysis

3.1. Schematics and assumptions

The deformation of composite materials consisting of

a (i) matrix containing monodisperse spherical microcap-

sules with simple cubic (SC), body-centered cubic (BCC),

or face-centered cubic (FCC) packing arrangements and of

(ii) monodisperse and polydisperse microcapsules randomly

distributed throughout the matrix was simulated numeri-

cally. Fig. 1 shows a quarter of a simulated unit cell with (a)

SC, (b) BCC, and (c) FCC packing arrangements along with

the associated Cartesian coordinate system. In addition, a

microstructural stochastic packing algorithm (Kumar et al.,

2013) was used to create geometric models of monodisperse

and polydisperse microcapsules randomly distributed in a

matrix. Spherical microcapsules were placed at random lo-

cations in a 3D representative volume of arbitrary size until

the desired core and shell volume fractions were achieved.

Microstructural generation and positioning was conducted

such that the minimum centroidal distance C between two
D
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Fig. 1. Schematics of core-shell particles with an (a) SC, (b) BCC, and (c) FCC

packing arrangement, and the associated Cartesian coordinate system. The

boundary conditions given by Eqs. (20) and (21) are illustrated. Five of six

faces are fixed, and a uniform normal displacement is applied to the final

face.

Fig. 2. Schematics of unit cells used for numerical simulations with (a)

monodisperse microcapsules, φc = 0.097, and φs = 0.041 as well as with

(b) polydisperse microcapsules, φc = 0.095, and φs = 0.041.
proximal microcapsules was always greater than the sum of

their radii r1 and r2, i.e., CD > r1 + r2 (Kumar et al., 2013).

Fig. 2 shows examples of simulated (a) monodisperse and

(b) polydisperse microcapsules randomly distributed in a

continuous matrix. Here, the representative elementary vol-

ume was a cube 75 μm in length.

To make the problem mathematically tractable, the core,

shell, and matrix materials were assumed to be isotropic,

homogeneous, and linearly elastic with constant mechan-

ical properties. Additionally, the interfaces between com-

ponents were assumed to be continuous, i.e., no sliding or

gapping was allowed. Finally, body forces were assumed to

be negligible.
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3.2. Governing equations and boundary conditions

The linear elastic boundary value problem in each compo-

nent of the composite material is defined through the (i) dif-

ferential equilibrium equations, (ii) the strain-displacement

relationships, and (iii) the constitutive relations given

in Eq. (1).

First, in the absence of body forces, the differential

equilibrium equation in any component is expressed as

(Hjelmstad, 2005)

∇ · σ = 0 or σi j, j = 0. (16)

Second, the strain–displacement relation in any component

is given by

ε = 1

2

[∇u + ∇T u
]

or εij = 1

2

(
ui, j + uj,i

)
(17)

where u = [u, v, w]T is the displacement vector. Finally, the

constitutive law for each constituent is given by

σ = CI : ε (18)

where the subscript I = {c, s, m} denotes the material tensor

for either the core, the shell, or the matrix.

Combining Eqs. (16)–(18) results in governing equations

expressed solely in terms of the displacement field. These

equations are referred to as Navier’s equations, which, for the

present case, are given by

(λI + μI)∇(∇ · uI) + μI∇2uI = 0 (19)

where λI and μI are the Lamé’s parameters for each con-

stituent.

In order to fully define the problem at hand, boundary

conditions must also be prescribed for the unit-cell domain

shown in Fig. 1. To do so, six boundary conditions are re-

quired, which were selected in order to model the elas-

tic deformation of a computational domain of length L in

the y-direction. The displacement in the y-direction (i.e., v)

was set equal to �L on the face of the unit cell at y = L

while the opposing face (y = 0) was fixed in the y-direction

such that

vi(x, L, z) = �L and vi(x, 0, z) = 0. (20)

By virtue of symmetry, the unit cell faces normal to the x-

and z-directions were immobile in the directions perpendic-

ular to the imposed uniform strain. Therefore, the displace-

ments in the x- and z-directions (i.e., u and w) vanished,

i.e.,

ui(0, y, z) = 0, ui(L, y, z) = 0, wi(x, y, 0) = 0, and

wi(x, y, L) = 0. (21)

Finally, continuous/welded contact between the core

and the inner shell and between the outer shell and

the matrix implied displacement continuity across their

interfaces.

3.3. Data processing

Eqs. (17) and (18) were used to obtain the local strains,

and subsequently stresses, throughout the unit cells from

the displacement vector u. The stress and strain compo-

nents were not uniform throughout the heterogeneous struc-
ture, and thus were volume-averaged to obtain the aver-

age stresses. Because the direct stress components—namely,

σ11 = σx, σ22 = σy, and σ33 = σz— and their strain counter-

parts alone are adequate to extract the effective moduli,

only their volume averages were computed through the

formulae

σ̄ j = 1

V

∫ H

0

∫ L

0

∫ H

0

σi(x, y, z)dxdydz and

ε̄ j = 1

V

∫ H

0

∫ L

0

∫ H

0

εi(x, y, z)dxdydz (22)

for each subscript J ∈ {x, y, z}, where the unit cell volume

is V = LH2. The volume-averaged stresses and strains were

then used to compute the effective Young’s modulus Eeff and

the effective Poisson’s ratio νeff by solving

σ̄x = Eeff

(1 + νeff)(1 − 2νeff)
[(1 − νeff)ε̄x+νeffε̄y+νeffε̄z]

and (23)

σ̄y = Eeff

(1 + νeff)(1 − 2νeff)
[νeffε̄x+(1 − νeff)ε̄y+νeffε̄z].

(24)

Note that we numerically verified that σ̄x = σ̄z and ε̄x = ε̄z for

all cases considered in this study. This was expected by virtue

of symmetry in the geometry and of the imposed boundary

conditions.

Finally, for randomly distributed arrangements, a dis-

placement was successively imposed along the x-, y-, or z-

direction. The predicted values of Eeff and νeff were found to

be independent of the direction of prescribed displacement.

This established that the unit cell of randomly distributed

microcapsules was isotropic and constituted a representative

elementary volume (REV) of the composite structure.

3.4. Method of solution

The finite element method was used to solve the govern-

ing Eq. (19) over the REV domain that was discretized with

an adequately refined mesh using the boundary conditions

given by Eqs. (20) and (21). The volume-averaged stresses

and strains were used to retrieve the effective Young’s mod-

ulus Eeff and the effective Poisson’s ratio νeff from Eqs. (23)

and (24). Mesh convergence was verified such that the rela-

tive difference in the effective Young’s modulus and Poisson’s

ratio was less than 0.5% when the minimum element size was

reduced by a factor of 10. A minimum element size of 0.2 μm

and a maximum element growth rate of 1.5 gave numerically

converged results.

The method of solution was validated by considering the

aforementioned three-component composite geometry with

each component having identical material properties. The

numerically predicted effective Young’s modulus and Pois-

son’s ratio were found to be identical to the values of E and ν
imposed for each component.
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Fig. 3. (a) Effective Young’s modulus Eeff and (b) effective Poisson’s ratio νeff

of a core-shell-matrix composite as functions of the number of unit cells

N stacked in the direction of applied uniaxial strain. Results were obtained

from numerical simulations of SC, BCC, and FCC packing structures and two

combinations of core and shell volume fractions, φc and φs , are shown. Here,

Dc = 16 μm, Ds = 18 μm, Ec = 55.7 MPa, Es = 6.3 GPa, Em = 16.75 GPa, νc =
0.499, νs = 0.34, and νm = 0.2 (baseline case).
4. Results and discussion

4.1. Effect of geometric parameters

The following sections discuss the effects of geometric pa-

rameters, namely, the number of simulated unit cells N, the

core and shell diameters Dc and Ds, the unit cell length L,

and the core and shell volume fractions φc and φs on the ef-

fective Young’s modulus Eeff and the effective Poisson’s ratio

νeff of the three-component composites considered. The ef-

fects of both microcapsule spatial and size distributions on

Eeff and νeff were also discussed. In the baseline case, the

core, shell, and matrix Young’s moduli were taken as Ec =
55.7 MPa (Hossain and Ketata, 2009), Es = 6.3 GPa (Konnerth

et al., 2007), and Em = 16.75 GPa (Mindess et al., 2003), while

their Poisson’s ratios were νc = 0.499 (Trinquet et al., 2014),

νs = 0.34 (Konnerth et al., 2007), and νm = 0.2 (Mindess

et al., 2003), respectively. These properties corresponded to a

three-component PCM composite consisting of microencap-

sulated paraffin wax with a polymeric shell embedded in a

cement matrix.

4.1.1. Effect of number of unit cells

Fig. 3 plots (a) the effective Young’s modulus Eeff and (b)

the effective Poisson’s ratio νeff retrieved from numerical

simulations of three-component composites as functions of

the number of unit cells N ranging from 1 to 20 repeated

in the direction of applied uniaxial strain and containing

monodisperse core-shell particles packed in either SC, BCC,

or FCC arrangements. Two different sets of core and shell

volume fractions were considered, namely (i) φc = 0.05 and

φs = 0.0165 and (ii) φc = 0.25 and φs = 0.1. In all cases, the

core and shell diameters Dc and Ds were taken as 16 and

18 μm, respectively. First, Fig. 3 indicates that Eeff and νeff

were independent of the number of unit cells considered.

Therefore, simulating one unit cell was sufficient to predict

the effective Young’s modulus and Poisson’s ratio for SC, BCC,

or FCC packing arrangements, as expected by virtue of sym-

metry. Second, the effective Young’s modulus Eeff and Pois-

son’s ratio νeff for BCC and FCC packing arrangements were

nearly identical for the volume fractions φc and φs consid-

ered. For small core and shell volume fractions of 0.05 and

0.0165, respectively, the predicted Eeff and νeff for the SC

packing arrangement were similar to those of the BCC and

FCC packings. However, Eeff and νeff were respectively larger

and smaller for SC packing compared with BCC and FCC pack-

ings for larger core and shell volume fractions φc and φs of

0.25 and 0.1.

4.1.2. Effect of core and shell diameters and unit cell size

Fig. 4 plots (a) the effective Young’s modulus Eeff and (b)

the effective Poisson’s ratio νeff retrieved using numerical

simulations of three-component composites as functions of

core volume fraction φc ranging from 0.05 to 0.4 for core-

shell particles packed in an FCC arrangement in a continu-

ous matrix. The mechanical properties of each component

were those of the baseline case. The shell volume fraction

φs was held constant and equal to 0.1. The core volume frac-

tion φc was varied by either adjusting the core diameter

Dc and keeping the unit cell length L constant and equal to

100 μm or by varying L while Dc was constant and equal to
16 μm. Similarly, Fig. 4c and 4d, respectively, plot the effec-

tive Young’s modulus Eeff and the effective Poisson’s ratio νeff

for an FCC packing arrangement as functions of shell volume

fraction φs ranging from 0.05 to 0.4 achieved by varying ei-

ther L or Ds. Here, the core volume fraction φc was held con-

stant and equal to 0.1. Overall, Fig. 4 establishes that for given

core and shell volume fractions, Eeff and νeff were indepen-

dent of Dc, Ds, and L. It indicates that Eeff and νeff depended

only on the volume fractions φc and φs for given values of Ec,

Es, Em, νc, νs, and νm. This was verified to hold true also for

BCC and SC packing arrangements (not shown).

4.1.3. Effect of size distribution and packing arrangement

Table 1 reports numerical predictions of the effective

Young’s modulus Eeff and effective Poisson’s ratio νeff of

three-component composite structures consisting of vari-

ous core and shell volume fractions of monodisperse and
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a b

dc

Fig. 4. (a) Effective Young’s modulus Eeff and (b) effective Poisson’s ratio νeff of a core-shell-matrix composite as functions of the core volume fraction φc for

constant shell volume fraction φs = 0.1. (c) Effective Young’s modulus and (d) effective Poisson’s ratio νeff as functions of the shell volume fraction φs for constant

φc = 0.1. The core-shell particles were arranged in FCC packing. The core, shell, and matrix Young’s moduli and Poisson’s ratios were those of the baseline case.

Table 1

Effective Young’s modulus Eeff and effective Poisson’s ratio νeff of three-phase composites consisting of p microcapsules either monodisperse

or polydisperse and either in ordered packing arrangements or randomly distributed in a continuous matrix with unit cell length L. Here,

Ec = 55.7 MPa, Es = 6.3 GPa, Em = 16.75 GPa, vc = 0.499, vs = 0.34, and vm = 0.2.

Composite Packing Size distribution p L (μm) φc φs Eeff (GPa) νeff

1 Random Monodisperse 19 75 0.097 0.041 13.77 0.25

2 Random Polydisperse 22 75 0.095 0.041 13.83 0.25

3 FCC Monodisperse 4 100 0.100 0.043 13.51 0.25

4 BCC Monodisperse 2 100 0.100 0.043 13.50 0.25

5 Random Monodisperse 39 75 0.200 0.046 11.41 0.29

6 Random Polydisperse 38 75 0.200 0.046 11.56 0.29

7 FCC Monodisperse 4 100 0.200 0.043 11.14 0.30

8 BCC Monodisperse 2 100 0.200 0.043 11.12 0.30
polydisperse microcapsules randomly distributed in a con-

tinuous matrix with a unit cell length L = 75 μm (Fig. 2).

It also shows the values of Eeff and νeff for equivalent com-

posites consisting of monodisperse microcapsules with BCC

and FCC packing arrangements having nearly identical core

and shell volume fractions φc and φs. Here also, the me-

chanical properties of each constituent were those of the

baseline case. Table 1 indicates that, for given core and shell

volume fractions and constituent elastic moduli, numerical

predictions of Eeff and νeff of the different core-shell-matrix

composites with randomly distributed monodisperse and

polydisperse microcapsules agreed within 1%. Similarly, pre-

dictions of Eeff and νeff for FCC and BCC packing arrange-

ments fell within 1% of each other and within a few percent of
those obtained for randomly distributed monodisperse and

polydisperse microcapsules. These results establish that Eeff

and νeff were independent of spatial and size distributions. In

other words, BCC and FCC packing arrangements were repre-

sentative of the elastic behavior of monodisperse or polydis-

perse microcapsules randomly distributed in a matrix. This

result is interesting in that simulating deformation in BCC or

FCC unit cells is significantly less time consuming and less

computationally intensive than any representative elemen-

tary volume with randomly distributed microcapsules.

4.1.4. Effect of core and shell volume fractions

Fig. 5 plots (a) the effective Young’s modulus Eeff and

(b) the effective Poisson’s ratio νeff of a three-component
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Fig. 5. (a) Effective Young’s modulus Eeff and (b) effective Poisson’s ratio

νeff of a core-shell-matrix composite as functions of the core volume frac-

tion φc for constant shell volume fraction φs = 0.043. Results were obtained

from simulations of SC, BCC, and FCC packing structures as well as for ran-

domly distributed monodisperse and polydisperse structures. Predictions of

the best EMAs are also shown. Here, Ec, Es, Em, νs , and νm were those of the

baseline case.

Fig. 6. (a) Effective Young’s modulus Eeff and (b) effective Poisson’s ratio νeff

of a core-shell-matrix composite as functions of the volume fraction of shell

material φs with constant core volume fraction φc = 0.2. Results were ob-

tained from numerical simulations of SC, BCC, and FCC packing structures as

well as for randomly distributed monodisperse and polydisperse structures.

Predictions of the best EMAs are also shown. Here, the elastic moduli of each

phase were those of the baseline case.
core-shell-matrix composite as functions of core volume

fraction φc ranging from 0 to 0.3 for a constant shell volume

fraction φs of 0.043. The microcapsules were either monodis-

perse or polydisperse and either packed in SC, BCC, or FCC ar-

rangements or randomly distributed in the matrix (Table 1).

Fig. 5 establishes that the effective Young’s modulus Eeff de-

creased with increasing core volume fraction φc. This was

due to the fact that the Young’s modulus of the core Ec was

significantly smaller than that of the matrix Em. Similarly,

the effective Poisson’s ratio νeff increased with core volume

fraction φc since the Poisson’s ratio of the core νc was much

larger than that of the shell and of the matrix. Fig. 5 illustrates

that the predictions of the effective Young’s modulus and

Poisson’s ratio were identical for monodisperse spheres in

BCC or FCC packing structures and for randomly distributed

monodisperse and polydisperse microcapsules, as previously

observed in Table 1. Here also, predictions for SC packing dif-

fered from other spatial distributions.
Fig. 6 plots (a) the effective Young’s modulus Eeff and (b)

the effective Poisson’s ratio νeff as functions of shell volume

fraction φs ranging from 0.05 to 0.4 with a constant core vol-

ume fraction φc of 0.2. Here also, Eeff decreased with increas-

ing shell volume fraction because the Young’s modulus of the

shell Es was smaller than that of the matrix. Similarly, νeff

increased with increasing shell volume fraction because the

Poisson’s ratio of the shell νs was larger than that of the ma-

trix. Again, the numerical predictions for BCC and FCC pack-

ing arrangements and randomly distributed microcapsules

were identical but differed from those for SC packing.

Figs. 5 and 6 also plot the effective Young’s modulus

and Poisson’s ratio as a function of core and shell vol-

ume fractions predicted by several EMAs found in the lit-

erature (Voigt, 1910; Reuss, 1929; Hashin and Shtrikman,

1963; Hobbs, 1971; Qiu and Weng, 1991; Dunn and Ledbetter,

1995; Garboczi and Berryman, 2001; Li et al., 1999). Note

that, for the sake of clarity, only the EMAs giving the best
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Fig. 7. Ratio Eeff/Em of a core-shell-matrix composite for SC, BCC, or FCC packings as a function of the ratio Ec/Em for ratio Es/Em equal to (a) 0.1, (b) 1, (c) 10, and

(d) 100. Predictions of EMAs are also shown including the upper Qiu and Weng bound (Qiu and Weng, 1991), the D-EMT EMA (Garboczi and Berryman, 2001),

and the Hobbs model (Hobbs, 1971) (for Es = Em). Here, φc = 0.3, φs = 0.1, νc = 0.499, νs = 0.34, and νm = 0.2.
predictions were shown. Among the three-component EMAs,

the D-EMT model (Garboczi and Berryman, 2001), i.e.,

Eqs. (10) and (13), the Qiu and Weng (1991) upper bound,

i.e., Eqs. (6) and (8), and the model by Dunn and Ledbetter

(1995) gave the best agreement with numerical predictions

of Eeff and νeff for BCC and FCC packing arrangements and

randomly distributed monodisperse and polydisperse micro-

capsules. However, for SC packing, none of the EMAs con-

sidered agreed well with numerical predictions. In addition,

predictions of the effective Young’s modulus by the EMA de-

veloped by Hobbs (1971) for two-component systems and

given by Eq. (5) fell within 2% of those obtained numerically

for BCC and FCC packing arrangements for the cases consid-

ered by ignoring the presence of the shell. This led to accept-

able results because the shell volume fraction φs was small

and Es was similar to Em.

4.2. Effect of constituent elastic moduli

4.2.1. Effect of constituent Young’s moduli

Fig. 7a and Fig. 7d plot the ratio Eeff/Em of monodisperse

core-shell particles packed in SC, BCC, or FCC structures as a

function of the ratio Ec/Em ranging from 10−4 to 104 for ra-
tios Es/Em equal to 0.1, 1, 10, and 100, respectively. The ra-

tio Eeff/Em is shown for two values of matrix Young’s mod-

uli Em, namely 1 and 10 GPa. Then, the shell Young’s modu-

lus Es was adjusted to achieve the desired Es/Em ratio. In all

cases, the core and shell volume fractions φc and φs were

0.3 and 0.1, respectively. Here also, the Poisson’s ratios of the

core, shell, and matrix were νc = 0.499, νs = 0.34, and νm

= 0.2, respectively. Fig. 7 indicates that numerical predic-

tions of Eeff/Em were identical for BCC and FCC packings. Fur-

thermore, the ratio Eeff/Em was dependent only on the ratios

Ec/Em and Es/Em, rather than on the Young’s moduli of each

constituent phase Ec, Es, and Em individually. It is interest-

ing to note that the ratio Eeff/Em showed little dependence

on Ec/Em in the limiting cases when Ec/Em was very small

(soft core) or very large (hard core). This suggests that for mi-

croencapsulated PCM-concrete composites with a soft core, a

variance in the Young’s modulus Ec of the PCM has little effect

on Eeff.

Fig. 7a–d also plot the EMAs for Eeff that gave the best

agreement with numerical results, namely, the upper bound

of the Qiu and Weng model (Qiu and Weng, 1991), i.e.,

Eqs. (6) and (8) and the D-EMT model (Garboczi and Berry-

man, 2001), i.e., Eqs. (10) and (13). The predictions by the
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upper bound of the Qiu and Weng model of Eeff/Em agreed

the most closely with numerical predictions of Eeff for micro-

capsules with BCC or FCC packings across the ranges of Ec/Em

and Es/Em considered. For cases when Ec was smaller than Em

(Ec/Em < 1), such as for microencapsulated PCM in concrete,

predictions from the D-EMT EMA were in better agreement

with numerical predictions than those by the Qiu and Weng

model. Finally, Fig. 7 also shows the Hobbs model [Eq. (5)]

(Hobbs, 1971) for the case when Es/Em = 1. In this case, the

predictions of the EMA proposed by Hobbs (1971) fell within

3% of those for BCC and FCC packing arrangements.

Fig. 8 plots the effective Poisson’s ratio νeff of monodis-

perse microcapsules arranged in SC, BCC, or FCC packings

as a function of the ratio Ec/Em for cases corresponding to

those shown in Fig. 7. It indicates that (i) the numerical

predictions of νeff were equivalent for BCC and FCC pack-

ing arrangements and (ii) the effective Poisson’s ratio νeff

was also dependent only on ratios Ec/Em and Es/Em, rather

than on Ec, Es, and Em independently. Interestingly, νeff ap-

peared to reach a maximum when the ratio Ec/Em was
Fig. 8. Effective Poisson’s ratio νeff of a core-shell-matrix composite for SC, BCC, or

1, (c) 10, and (d) 100. Predictions of the upper Qiu and Weng bound (Qiu and Weng,

Here, φc = 0.3, φs = 0.1, νc = 0.499, νs = 0.34, and νm = 0.2.
between 0.01 and 1 for all values of Es/Em considered. This

suggests that for composites with Ec < Em, νeff may become

undesirably large for certain values of Ec. When Ec/Em was

very small or very large, νeff did not show significant de-

pendence on Ec/Em. Fig. 8 also shows the predictions of the

EMAs for νeff that agreed the most with numerical predic-

tions (Hashin and Shtrikman, 1963; Qiu and Weng, 1991;

Garboczi and Berryman, 2001). Overall, the effective Pois-

son’s ratio predicted using the D-EMT EMA (Garboczi and

Berryman, 2001) fell within 5% of that predicted numerically

for BCC or FCC packing, for the ranges of Ec/Em and Es/Em

considered.

4.2.2. Effect of constituent Poisson’s ratios

In all the previous results, νc, νs, and νm were kept con-

stant and corresponded to the baseline case. This section as-

sesses their effects on Eeff and νeff. Fig. 9a and Fig. 9b plot the

effective Young’s modulus Eeff of a composite containing mi-

crocapsules with SC, BCC, or FCC packings as a function of

the ratio νc/νm ranging from (a) 0 to 5.0 or (b) 0 to 2.5 for

ratios νs/νm of 0.5 and 2 and for matrix Poisson’s ratios νm of
FCC packing as a function of the ratio Ec/Em for the ratio Es/Em of (a) 0.1, (b)

1991) and the D-EMT EMA (Garboczi and Berryman, 2001) are also shown.
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Fig. 9. Effective Young’s modulus Eeff and the ratio νeff/νm of a core-shell-matrix composite packed in an SC, BCC, or FCC arrangement as a function of the ratio

νc/νm for (a, c) νm = 0.1 and (b, d) νm = 0.2. The upper Qiu and Weng bound (Qiu and Weng, 1991) and the D-EMT EMA (Garboczi and Berryman, 2001) are also

included. Here, φc = 0.3, φs , = 0.1, Ec = 55.7 MPa, Es = 6.3 GPa, and Em = 16.75 GPa.
0.1 and 0.2, respectively. Similarly, Fig. 9c and Fig. 9d plot the

corresponding ratio νeff/νm of a core-shell matrix composite

as a function of the ratio νc/νm. The core and shell volume

fractions φc and φs were constant and equal to 0.3 and 0.1,

respectively. The core, shell, and matrix Young’s moduli were

taken as Ec = 55.7 MPa, Es = 6.3 GPa, and Em = 16.75 GPa,

respectively. Fig. 9 indicates that the effective Young’s mod-

ulus Eeff was generally independent of the core, shell, and

matrix Poisson’s ratios for a given packing arrangement ex-

cept as the core Poisson’s ratio νc approached the theoretical

limit of 0.5 when Eeff increased slightly. Here also, predic-

tions by the D-EMT model (Garboczi and Berryman, 2001)

for both Eeff and νeff were in good agreement with the nu-

merical predictions for FCC and BCC packing arrangements.

Moreover, unlike the ratio Eeff/Em, the ratio νeff/νm depended

on the constituent Poisson’s ratios and not solely on the ra-

tios νc/νm and νs/νm. However, the effective Poisson’s ra-

tio νeff was generally independent of the core Poisson’s

ratio.
5. Conclusions

This study performed detailed 3D numerical simulations

of the elastic deformation of three-component composites

consisting of monodisperse or polydisperse microcapsules

ordered in SC, BCC, or FCC packing or randomly distributed

in a continuous matrix. It demonstrated that the effective

Young’s modulus Eeff and effective Poisson’s ratio νeff were

identical for BCC, FCC, and randomly distributed microcap-

sule packing arrangements over a wide range of core and

shell volume fractions and constituent mechanical proper-

ties. The ratio Eeff/Em was found to be a function of the

core and shell volume fractions φc and φs and of the ra-

tios Ec/Em and Es/Em. However, it was generally independent

of νm and of the Poisson’s ratios νc/νm and νs/νm. The ef-

fective Poisson’s ratio νeff was found to be a function of φc

and φs, the ratios Ec/Em and Es/Em, and the shell and matrix

Poisson’s ratios νs and νm. The upper bound of the EMA by

Qiu and Weng (1991) predicted accurately the numerical
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results of Eeff for BCC and FCC packings and randomly

distributed microcapsules. The D-EMT EMA developed by

Garboczi and Berryman (2001) gave excellent predictions

of Eeff for cases when Ec/Em was less than 1. Additionally,

the EMA developed by Hobbs (1971) for two-component

composites gave accurate predictions of Eeff when the shell

Young’s modulus Es was similar to that of the matrix Em. Fi-

nally, the D-EMT EMA gave the best agreement with numer-

ical predictions of the effective Poisson’s ratio for BCC and

FCC packing arrangements in the range of parameters con-

sidered. These results can be used to inform the selection of

materials for PCM composites for building applications and

for other three-phase core-shell-matrix composites such as

self-healing polymer composites. In the meantime, efforts

are underway to confront these numerical results with ex-

perimental measurements for concrete containing microen-

capsulated PCMs.
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